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LETTER TO THE EDITOR 

Magnetization of a Potts ferromagnet on a Sierpinski carpet 
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RJ, Brazil 
$ Departamento de Fisica, Universidade Federal de Alagoas, 57000 Macei6, AL, Brazil 

Received 29 June 1990 

Abstract. We study the inhomogeneous magnetization behaviour of a q-state Potts 
ferromagnet on a Sierpinski carpet as a function of the temperature, using a real-space 
renormalization group procedure. Two qualitatively different regions on the carpet are 
distinguished: ( a )  the interior of the carpet and (b)  the set of internal walls which border 
the eliminated areas. The spontaneous mean magnetization curves for these regions are 
obtained with the corresponding critical exponents p and pw, for different values of q. 
We find that the magnetization of region ( b )  goes to zero at the critical temperature always 
below the one of region ( a ) .  

To establish how the fractal nature of a body alters its physical properties is an active 
field of interest nowadays. In particular the study of critical phenomena on fractal 
lattices (as they could simulate the percolative cluster on a phase transition) has been 
object of much attention (Gefen et al 1980,1981,1983a, 1984, Havlin et aZ1983, Suzuki 
1983, Bhanot er a1 1984,1985). It has been shown (Gefen et a1 1980) that, for Ising 
systems, the presence of an ordered phase on these fractal lattices is associated with 
an infinite order of ramification (Mandelbrot 1982), which is the case of the Sierpinski 
carpet family. 

Gefen et a1 (1984) treated Ising models on these carpets using a bond-moving 
renormalization group (RG) scheme, by considering that the iteration of the RG transfor- 
mation generates two basic exchange variables, which implies the establishment of 
two recursion relations. A similar point of view, using RG techniques, was adopted by 
Costa et a1 (1987) to make a quantitative analysis of the q-state Potts ferromagnet, 
this time simulating the Sierpinski carpet by appropriate hierarchical lattices (Berker 
and Ostlund 1979, Griffiths and Kaufman 1982, Melrose 1983a,b, Kaufman and 
Griffiths 1984, Tsallis 1985). This scheme gave good numerical estimates for the 
criticality of Sierpinski carpets, showing that the transformation used is quite satis- 
factory. 

The purpose of this letter is to study how the magnetization on a Sierpinski carpet 
behaves, by using the same transformations as Costa et al(1987). As the magnetization 
on a fractal lattice (which is not translationally invariant) is non-uniform, we consider, 
as an approximation, two typical regions on the carpet and calculate the corresponding 
mean magnetizations (as functions of the temperature) and critical exponents p, using 
a RG procedure introduced by Caride and Tsallis (1987). In what follows, we first 
discuss the RG transformation. The results for the magnetization curves and critical 
exponents p are then presented and discussed. Finally we present our conclusions. 
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Consider a Sierpinski carpet obtained by dividing a unit square into b2 small squares 
and then cutting out symmetrically 1’ central squares (as shown in figure 1, with b = 3 
and I = 1). This operation is carried out iteratively on the microscopic scale. The fractal 
dimension of the lattice obtained in this way is Df = ( b2 - 12)/ln( b). We attach to each 
site on this fractal lattice a q-state Potts variable. The Hamiltonian is given by: 

H = - C J @ , p ,  (1) 

where the sites interact ferromagnetically through Jii = J ,  if both sites i and j are on 
the walls of eliminated areas on the fractal and through Jli = J otherwise. 

The RG procedure of Caride and Tsallis (1987) allows us to calculate the order 
parameter for this system directly (without going through the calculation of the 
thermodynamic free energy). We summarize it here, as we apply it to our model. 

Initially we consider a Sierpinski carpet of linear size L. We associate each site on 
this microscopic fractal lattice with an elementary magnetic moment, p, which we 
leave as a new variable of the RG procedure (the other variables are K = J / k E T  and 
Kw = Jw/ kE T ) .  We define the order parameters in the thermodynamic limit L + CO for 
( a )  the system consisting of all sites which are nor on the walls bordering the eliminated 
areas, as M = N (  K ,  Kw)/ L D  and for (6) the system consisting of all sites on the walls, 
as Mw = Nw( K ,  K w ) /  LDW. N (  K ,  Kw) is the thermal average number of sites in system 
( a )  with the Potts variable in a privileged state minus those with Potts variable in any 
other state (analogously, Nw(K, K,) corresponds to system (6)). D and Dw are such 
that L D -  M, the mass (number of sites) of system ( a )  and L D w -  M,, the mass 
(number of sites) of the system ( 6 ) .  We mention that, for the Sierpinski carpet we 
considered, D and Dw are the same ( D  = Dw = Of). 

The original system is transformed into a renormalized carpet of linear size L’, 
with renormalized variables K’, K ;K, and p‘. We propose that, through renormalization, 
both the total magnetic moments of systems ( a )  and (6) must be preserved (as they 
are extensive quantities): 

( i . j )  

Following along the lines of Caride and Tsallis (1987) we obtain for (K, K,) belonging 
to the ordered phase: 

( 3 0 )  
dn)  M ( K ,  K,) = lim - 

n+w BnD 

dn)  Mw(K, K,) = lim - 
n+m B n D w  

Figure 1. Iteration of the Sierpinski carpet. ( a )  Initial unit square with b = 3 ,  I =  1 .  ( b )  
The second iteration. 
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where B = L/ L’> 1 is the linear scale factor and n is the number of iterations of the 
RG transformation. If the point ( K ,  K,) belongs to the disordered phase, we obtain 
that both M (  K ,  K,) and M,( K ,  K,) are equal to zero, as expected. 

To close the procedure we now specify how to generate the RG recurrence relations 
for K ,  K , ,  and p. We shall adopt the same aggregation procedures as Costa et a1 
(1988), for the Sierpinski carpet with b = 3 and I = 1, shown in figure 2. The neighbour- 
hood of the interface between two cells (figure 2( a ) )  is associated with the renormaliz- 
ation of the K bond and the neighbourhood of the interface between a cell and an 
eliminated cell (figure 2 ( d ) )  is associated with the renormalization of the K w  bond. 
In figures 2( b )  and 2( e)  we show how to obtain the hierarchical lattices which we will 
use to simulate each one of these regions. In our case these hierarchical lattices are 
of the kind called by Griffiths and Kaufman (1982) ‘non-uniform’: they mix different 
kinds of bonds, each with its own scheme of aggregation. 

1 1 1  

As we are now simulating the two regions on the carpet by hierarchical lattices, 
the factors B D  and B D w  which appear in equations 3 ( a )  and 3(b) will be approached 
(see Chame er a1 1987) by Bd and B d w ,  respectively, where: 

R and Rw are respectively the number of K and K w  bonds in the largest graph of 
figure 2 ( c )  while S and Sw are respectively the number of K and K w  bonds in the 
largest graph of figure 2 ( f ) .  The primes indicate the renormalized graphs, in an 
analogous way. 
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The renormalization equations for K and Kw have been obtained (Costa et al 
1987) through the break-collapse method (Tsallis and Levy 1981), using the more 
suitable variables t and tw:  

t = (1 -exp(-qJ/k,T))/(1 + ( q -  1) exp(-qJ/k,T)) (5a) 

tw = ( 1 - exp( -qJw/ kB TI)/  ( 1 + ( q  - 1) exp( -qJw/ kB 77). ( 5.6 1 

t ' = f ( t ,  tw) (6a 1 
t;Y = g(t ,  tw) ( 6 8 )  

These equations have the form: 

and give a phase diagram (Costa et a1 1987) as shown in figure 3. In this figure, A 
and C are, respectively, the trivial stable fixed points corresponding to the disordered 
and ordered phases. 

I .01 

1 

'VJ 
0.5 

I 
0 0.5 '4 

t 
Figure 3. Phase diagram (Costa er al 1987) in r - tw space for q = 0.5, 1, 2 and 4, obtained 
through the RG transformation indicated in figure 2. The points A, E, C, 0, E, P are fixed 
points whose stabilities are given by the arrows. 

We need extra equations, besides the ones for K and K L ,  to calculate the 'effective' 
magnetic moments for the two renormalized clusters, which correspond to the two 
typical regions on the carpet. These equations are obtained by requiring that the total 
magnetic moment of the original and renormalized clusters for both transformations 
in figure 2 be preserved. This gives rise to two equations of the form: 

CL'= MI, t W ) P  (7a) 

CL;Y = I ( t ,  tw)l lw ( 7 b )  
respectively associated with the transformations of figure 2( c )  and 2(f).  

Using equations (3), (6) and (7), we obtain the magnetizations M and Mw as 
functions of the temperature, for typical values of Kw/  K. The curves obtained for 
q = 2 are shown in figure 4. We also show in figure 5 the curves for other values of q 
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Figure 4. Magnetizations M and Mw as functions of the temperature for q = 2 ,  ( a )  
Kw/  K = 0.5, ( b )  K w /  K = 1.0, ( c )  K,/ K = 2.0 and ( d )  K w /  K = 2.5. Full curves denote 
M and broken lines denote M w .  

(3, 4 and 9, for Kw/K = 2. The associated critical exponents P and Pw are displayed 
in table 1. They have been analytically calculated using a similar expression as the 
one which appears in Caride and Tsallis (1987). As we now have two different recurrence 
equations for K and Kw, it is necessary to calculate the eigenvalues of the Jacobian 
of the transformation at the fixed critical points, and then generalize the expression 
for ,f? and Pw: 

where A >  is the greatest eigenvalue (greater than 1) at the critical fixed point. We also 
verify, by calculating the exponents through the curves obtained, that both /3 and Pw, 
for a fixed q, do not vary with the ratio Kw/K, as it must be on the basis of the concept 
of universality classes. 
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k,T/J 

Figure 5. Magnetizations M and Mw as functions of the temperature for K,/ K = 2.0 and 
q = 2, 3, 4 and 5. Full curves denote M whereas broken curves denote Mw . 

Table 1. Present RG values for the critical exponents p and Pw for q = 2, 3, 4 and 5 

4 t tW P P W  

2 0.7746 0.0328 0.034 0.59 
3 0.7791 0.0118 0.0324 0.86 
4 0.7814 0.0055 0.032 1.1 
5 0.7829 0.0030 0.0319 1.4 

When K,/ K is below a certain value, Mw is below M for all temperatures. When 
K,/ K increases (see the case Kw/K = 2 in figure 4), for low temperatures Mw is 
above M and for a given temperature these curves intersect. In this way, M ,  always 
goes to zero at the critical temperature below M (since for all K,/ K ,  /3, > /3). We see 
that the q-evolution of the critical exponents p and /Iw suggests that this is true for 
any value of q, as far as the transition is second order. p does not vary significantly 
with q (as q increases it slightly decreases) whereas pw greatly increases as q increases. 
For q = 4 and q = 5 we obtain values for pw greater than unity (see table 1). It is worth 
stressing that, to the best of our knowledge, this is the first time that a p greater t,han 
unity is obtained in a magnetic system. 

We could think of Mw as a mean magnetization for the region of internal walls 
on the carpet. We believe that this region would play an analogous role as a free 
frontier in a semi-infinite bidimensional system. In this way, it is interesting to compare 
the Mw behaviour with, for instance, the behaviour of the frontier magnetization of 
an king ferromagnet in a semi-infinite square lattice. The Ising model in the semi-infinite 
square lattice has been exactly solved by Au-Yang (1973). The interactions on the 
frontier, say J,, are allowed to be different from the other interactions, J. As expected, 
Mw increases as Jw increases. Mw approaches M, the bulk order parameter (see, for 
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Figure 6. Frontier magnetization M ,  as a function of the temperature for the king 
ferromagnet in a semi-infinite square lattice, for some values of J w / J .  The bulk magnetiz- 
ation M is also shown as a reference. 

example, McCoy and Wu 1973), when J w / J - 2  (see figure 6 ) .  We have used the 
expressions which appear in the work of Au-Yang to obtain the frontier order parameter 
Mw for higher values of Jw/ J and compared it to M. We find that Mw is greater than 
M for Jw/ J = 2.5, for instance, and that these curves intersect in very much the same 
way as the ones we found for the Sierpinski carpet. The values found for the critical 
exponents pw and p are respectively 1/2 and 1/8 (Pw> p, as for the carpet). 

In summary, we have obtained the approximate behaviour of the magnetization 
for a Potts ferromagnet on a Sierpinski carpet ( b  = 3 , 1 =  1 ) .  Two typical regions on 
this carpet have been simulated through suitably chosen hierarchical lattices. We have 
observed that, for several values of q, the magnetization of the region which consists 
of internal walls on the fractal has an exponent pW greater than the exponent p 
associated with the magnetization of the set of internal sites. The present formalism, 
as other similar methods, does not allow us to predict first-order transitions which 
must occur for values of q above a critical value, unknown for a fractal lattice. 

We acknowledge C Tsallis and E M F Curado for fruitful discussions and H Cruz for 
a critical reading of the manuscript. 
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